一、Hbase能做什么?
1. 海量数据存储:上百亿行 x 上百万列并没有列的限制当表非常大的时候才能发挥这个作用, 最多百万行的话,没有必要放入hbase中2. 准实时查询:百亿行 x 百万列,在百毫秒以内二、Hbase在实际场景中的应用:1. 交通方面:船舶GPS信息,全长江的船舶GPS信息,每天有1千万左右的数据存储。2. 金融方面:消费信息,贷款信息,信用卡还款信息等3. 电商:淘宝的交易信息等,物流信息,浏览信息等4. 移动:通话信息等,都是基于HBase的存储。Hbase的特点:1. 容量大:传统关系型数据库,单表不会超过五百万,超过要做分表分库,不会超过30列Hbase单表可以有百亿行、百万列,数据矩阵横向和纵向两个维度所支持的数据量级都非常具有弹性2. 面向列:面向列的存储和权限控制,并支持独立检索,可以动态增加列,即,可单独对列进行各方面的操作列式存储,其数据在表中是按照某列存储的,这样在查询只需要少数几个字段的时候,能大大减少读取的数量3. 多版本:Hbase的每一个列的数据存储有多个Version,比如住址列,可能有多个变更,所以该列可以有多个version4. 稀疏性:为空的列并不占用存储空间,表可以设计的非常稀疏。不必像关系型数据库那样需要预先知道所有列名然后再进行null填充5. 拓展性:底层依赖HDFS,当磁盘空间不足的时候,只需要动态增加datanode节点服务(机器)就可以了6. 高可靠性:WAL机制,保证数据写入的时候不会因为集群异常而导致写入数据丢失Replication机制,保证了在集群出现严重的问题时候,数据不会发生丢失或者损坏Hbase底层使用HDFS,本身也有备份。7.高性能:底层的LSM数据结构和RowKey有序排列等架构上的独特设计,使得Hbase写入性能非常高。Region切分、主键索引、缓存机制使得Hbase在海量数据下具备一定的随机读取性能,该性能针对Rowkey的查询能够到达毫秒级别LSM树,树形结构,最末端的子节点是以内存的方式进行存储的,内存中的小树会flush到磁盘中(当子节点达到一定阈值以后,会放到磁盘中,且存入的过程会进行实时merge成一个主节点,然后磁盘中的树定期会做merge操作,合并成一棵大树,以优化读性能。)LSM树的介绍:https://www.cnblogs.com/yanghuahui/p/3483754.html总结:
面向列,容量大,写入比mysql快但是读取没有,超过五百万条数据的话建议读写用Hbase
转:https://www.jianshu.com/p/fe63e9786146